Hypothesis Testing for Block-structured Correlation for High Dimensional Variables
نویسندگان
چکیده
منابع مشابه
HYPOTHESIS TESTING FOR AN EXCHANGEABLE NORMAL DISTRIBUTION
Consider an exchangeable normal vector with parameters ????2, and ?. On the basis of a vector observation some tests about these parameters are found and their properties are discussed. A simulation study for these tests and a few nonparametric tests are presented. Some advantages and disadvantages of these tests are discussed and a few applications are given.
متن کاملMultiple hypothesis testing, adjusting for latent variables
In high throughput settings we inspect a great many candidate variables (e.g. genes) searching for associations with a primary variable (e.g. a phenotype). High throughput hypothesis testing can be made difficult by the presence of systemic effects and other latent variables. It is well known that those variables alter the level of tests and induce correlations between tests. It is less well kn...
متن کاملHypothesis Testing for High-dimensional Sparse Binary Regression.
In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which do...
متن کاملConfidence Intervals and Hypothesis Testing for High-Dimensional Statistical Models
Fitting high-dimensional statistical models often requires the use of non-linear parameter estimation procedures. As a consequence, it is generally impossible to obtain an exact characterization of the probability distribution of the parameter estimates. This in turn implies that it is extremely challenging to quantify the uncertainty associated with a certain parameter estimate. Concretely, no...
متن کاملA Hypothesis Testing Framework for High-Dimensional Shape Models
Statistical shape models are powerful tools for describing anatomical structures and are increasingly being used in a wide variety of clinical and biological contexts. One of the promising applications of this technology is the testing of hypotheses that entail shape differences, and visualization of those differences between cohorts. Statistical testing of shapes, however, is difficult due the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2022
ISSN: 1017-0405
DOI: 10.5705/ss.202019.0319